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STABILITY AND BRANCHING OF NORMAL OSCILLATION FORMS 
OF NONLINEAR SYSTEMS* 

A.L. ZHUPIEV and 1u.V. MIKHLIN 

Essentially nonlinear conservative systems that admit single-frequency modes, i.e. 
normal oscillations with rectilinear trajectories are considered. In many cases 
the passage to consideration of trajectories in the configuration space makes pos- 
sible a simplification of investigation of normal oscillation orbital stability, a 
problem which reduces to four Sturm-Liouville problems with equations in variations. 
All points of stability change of normal oscillations, which are also branching 
points, are determined for homogeneous systems. Various types of periodic modes of 
branching from normal form solutions (whether affecting or not affecting normal 
oscillations stability) are analyzed. The effect of mechanical characteristics of 
a nonlinear chain system with two degrees of freedom on the number of normal oscil- 
lation forms and their stability is studied. The obtained results are applied to 
nearly-homogeneous systems. 

1. Let us consider a conservative system with n degrees of freedom admitting oscilla- 
tions of rectilinear form 

Mu” + dV/du = 0 (1.1) 

M=diag(ml,m2 ,..., mn). U=(U~,UZ ,..., u,JT, -&-=(g,-&-t...y 

where V = V(U) is the system potential which is an even analytic function. The rectilinear 
normal forms of the system are determined by the relations 

u = cs (t), c = (C,, c, . . ., C,)T 

in which the constants Ci can be obtained using algebraic equations /l/, and function x (t) 
from the equation 

x" + (C, dV (r)ldu) = 0 

where the normalization condition (C,MC) = 1 was used. 
In investigating the stability of normal oscillations u = Q(t) we use the respective 

equations in variations 

M&L** + (d2V (Cz)ldz2)6u = 0 

whose solution will be sought in the form of functions of the variable x. In this systemof 

coordinates normal oscillations are defined by straight lines, which in a number of cases 

facilitates the investigation of stability. The passing to such coordinate system may be 
termed the geometrisation of the stability problem. 

We restrict the investigation to systems that admit diagonalization of matrix @V'(x)/&2 

by means of some transform y = P&L, where P is a constant nonsingular matrix. The theorem 

on the possibility of such diagonalization was proved earlier in /2/. It is feasible, when 

a conservative system which admits rectilinear oscillations of normal form andhastwodegrees 

of freedom, or when a system with any number of degrees of freedom is in the class of homogen- 

eous, symmetric, or other systems. 

The system of equations in variations decomposes now into n independent equations, one 

of which defines variations along the rectilinear trajectory, the remaining in directions or- 

thogonal to it. Orbital stability of normal oscillations is linked with the latter variations. 

It should be pointed out that each equation is of one and the same form 

2Wy” -+ W’y’ $~ Gy = 0, W = (1 - x2)rv (1.2) 
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where t;ii is an analytic function which has no real roots. Here, without loss of generality, 
the scale has been selected for convenience so that the amplitude of the generating solution 
is equal unity. 

The Floquet-Liapunov theory shows that the stability and instability domainsofsolutions 
of equations in variations in the system parameter space are separated by T- and T/Z-periodic 
solutions which branch from the generating solution /3/, with the domains of dynamic instabil- 
ity of the form of small wedges that contract to points when deviations from the generating 
solution approach zero /4/. 

Let G be a function of a certain number of parameters. The problem of determining the 
T- and T/B-periodic solutions decomposes in four Sturm-Liouville problems in even and odd .- 

functions regular at points 5 = &I, or having singularities of the form 1/l -9 at those 
points. 

ff the system potential is a polynomial, each equation in variations is a generalized 
~amc$ equation, while the eigenfunctions of the Sturm-Liouville problems are generalized Lam& 
functions. 

The periodic solutions that branch off from normal oscillations at stabilitychange,merge 
again at the change of system parameters with some normal oscillations, but without affecting 
the stability of these oscillations. The problem of deriving such solutions becomesaproblem 
in eigenvalues Sm=I, where S is the matrix of the analytic continuation of the general 
solution over the closed contour that includes the singular points x= il. 

2. Certain problems of dynamics of multilayer structures, as well as those with shrouded 
components reduce to the investigation of homogeneous systems that admit oscillations of rect- 
ilinear form, and to systems close to homogeneous. In the case of homogeneous systems whose 
potential is a homogeneous function of order p (linear systems are such) each equationinvari- 
ations (1.2) is reduced by the substitution x* =z to a hypergeometric equation of the form 

y.Z(l-z)+(+- 3p--2 
--z;;-zYt+~Y=o ) 

(2.1) 

In this case the problem of stability and branching, formulated above for equations in 
variations, is considerably simplified. It reduces to the determination of such parameter b 
for which, after passing over the closed contour containing the singular points z=o,z=1, 
the solution is multiplied by +1 or -1. Such solutions are called degenerate. Theyaregiven 
in /5/, and are of the form 

y = P'(1 - Z)@~((z) 

where r,(z) is a polynomial, and p1 can be equal zero or Upand pa either zero or 'Ia. 
By analogy to the Mathieu equation we denote the eigenfunctions which are Gegenbauer's 

polynomials by C,,(z) (an even T/2-periodic solution), by Cilkcl(z) (an odd T-periodic solu- 
tion), by S,,+,(z) ( an even T periodic solution), and by S4k+S(~) (an odd 2'1% periodic solu- 
tion) . In the linear case the trajectories of these solutions are of the form of Lissajou 
figures. Below we present in the same order the eigenvalues of these problems 

ha,, = k (2kp I- p - 2), h,k, = (2k + Ukp -I- 1) 

;;a: ; ?2i- i)(kp +P - t), hk+S = fk + W% -+ P -i- 2) 

I f ,*-a 1 

As an example, let us consider the homogeneous chain system with two degrees of freedom 

Equations for the determination of the oscillation form are 

Analysis of this equation shows that for positive values of the constraint parameter a 
a single cophasal oscillation form always exists and, depending on s and the homogeneityindex 
p, there are one, three, or five antiphased forms. For a nSgatiVe COnStraintS pa?Xmeter 8 

there exist for any p either a single antiphased, or one or three cophased oscillation forms. 
In this example the eigenvalues of the hypergeometric equation in variation are of the 
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The curves of relation between ?l = 4n-1arctg(~.2P-1/(p - 2)) and 5 = arctgp (Fig.1) enable 
us to establish the dependence of the number of forms on parameters of the chain system.Curve 
a corresponds to p = 4, a = 1; bisp = 8, a = 1; c isp = 4, a = 0; d isp = 4, a = I,2 (with 
x = 1 everywhere). The first points of stability change for p = 4 are indicated by the sym- 

bol 0 and for p = 8 by the symbol X, with the numeral near a point corresponding to the 
number of the eigenvalue hi. Sections of instability of oscillation forms lie between points 
with numerals from 4k + 1 to 4k + 2 and from 4k f- 3 to 4k + 4 (k = O,l, 2,. ,). Inthe asymmetric 
case (a# 1) some of the branching points become limit points. 

Fig.1 

To determine branching points of periodic solutions, which do not affect stability of 
normal oscillations we use the general solution of the equation in variations (2.1) in the 
form 

y = c,u, (2) + czz~~(p-~)uj(z) (near the singular point 2 = 0) 
y = D,u,(l -z) + D, 1/l -z u~(I -z) (near the singular point z = 1) 

where C,, C,, D,,D, are aribtrary constants and +(z), 
geometric functions /5/. We denote by N matrix 

uz (1 -z), us(z), ug (1 - z) are known hyper- 

which connects constants C,,C, and D,, D, 
It is possible to formulate a countable number of boundary value problems 

(JN-1JN)“‘=I (m=l,2,... ); 

for the determination of branching periodic solutions that pass m times round the singular 
points z =0 and z = 1. 

For the eigenvalue h = (p - 2)/(p - 1) such periodic solution can be written in the ex- 

plicit form 

Y=Cl(l + 1/~lzp-llj(p-n + C,z(l + J/-/1 _ zP-l)-12(P-1) 

3. The obtained results can be used in the case of systems close to periodic. Excluding 
from the investigation those values of parameter h for which a change of stability of the 
generating normal oscillations takes place, it is always possible to construct near-periodic 
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solutions, i.e. obtain normal oscillations with curvilinear trajectories /6/. Periodic solu- 
tions of equations in variations which separate the dcaaains of stability and instability are 
to be sought by the method of perturbations. In the zero approximation these solutions are 
defined by eigenfunctions of the hypergeometric equation that correspond to the generating 
homogeneous system. In the following approximations we determine the points of stability 
change using the conditions of periodicity of solutions. 

As an example we consider a symmetric chain system whose potential contains terms with 
second and fourth powers of variables ~1 and zz 

The branching point of rectilinear oscillation forms, which determines the first stabil- 
ity change of such periodic solutions was isolated in /7/ in the case of similar systems with 
a single parameter. 

The equation which defines the antiphased oscillation form , and the equationinvariations 
which makes possible the assessment of that phase orbital stability are of the form 

u" Jr u (v + 2puS) = 0, u" + u (0 + f3u‘) = 0 

or (the prime denotes differentiation with respect to W) 

d (y(1 -- u") -t p fl - u')) - v' (VU 4 ZpsS) + (a-+- fW) = 0 (3.2) 

which is the Lam& equation that for specific relations between parameters 
tions in the form of Lam& polynomials or functions. 

u,&Y,p has solu- 
When system (3.1) is nearly linear or 

cubic, the indicated above perturbation method for determining the first two points of stabil- 
ity change (branching of normal oscillations, and of periodic oscillations with the period of 
the generating solution, but shifted in phase by a half-cycle) yields the followingexpressions: 

yp = up, PO = p0 = 0 or yo = 00 = 0, fl0 = 2p0 
Yl-- 01 ~1_=0.75 or Y1- 61 ~=&[*]"=*.729 B1-2Pl 

for quasi-linear and cubic systems, respectively, for the first point of stability change and 

y. = uo, PO = p0 = 0 or v0 = 00 = 0, Bo = BP0 

R - a1 
B,--6Pl 

=0.25 or &$.=T I2 #$&I.274 

for the second point of stability change. 
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